CATALYTIC HYDROGEN PEROXIDE DECOMPOSITION ON Lal-,Sr,Co03-6 PEROVSKITE OXIDE
نویسندگان
چکیده
Lanthanide perovskite oxides are mentioned as material for hydrogen peroxide sensor because they can catalytically decompose hydrogen peroxide in an aqueous medium. The catalytic properties of these perovskite oxides to hydrogen peroxide are suggested due to their oxygen vacancies influenced by the oxide non-stoichiometry. In this paper, we investigate the catalytic hydrogen peroxide decomposition of a Lal. xSrxCo03-a thin film with x=0.7 for sensing application. The oxygen vacancy concentration in the oxide is estimated via the work function measurement using an electrolyte metal oxide semiconductor field effect transistor (EMOSFET) with a platinum remote gate. The experimental results show the catalytic properties of this oxide to hydrogen peroxide increases with increasing its non-stoichiometry, x.
منابع مشابه
Catalytic Decomposition of Hydrogen Peroxide in the Presence of Synthesized Iron-Manganese oxide Nanocomposites via Different Methods
The special application of iron-manganese oxide nanocatalysts has been investigated in decomposition of hydrogen peroxide. In this research, iron-manganese oxide nanocomposites were synthesized by co-precipitation, sol-gel and mechanochemical methods using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared on the variou...
متن کاملCharacterization of Cobalt Oxide Co3O4 Nanoparticles Prepared by Various Methods: Effect of Calcination Temperatures on Size, Dimension and Catalytic Decomposition of Hydrogen Peroxide
In this scientific research work we report a novel method to synthesis Co3O4 nanoparticles via calcinations of cobalt hydroxide which can be conveniently prepared by the Co(NO3 )2.6H2O with different reactants. In order to study the effect of calcination temperature on structure and morphology of the nanoparticles, the calcinations take place at various temperatures (at 300°C, 500°C and 700°C)....
متن کاملCatalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports
In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...
متن کاملCatalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports
In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...
متن کاملسنتز و ارزیابی فعالیت کاتالیزوری نانوبلورهای اسپینلی MnFe2O4 و Co3O4-Pb3O4 در تجزیهی تکپیشرانه هیدروژن پراکسید
Mixed spinel nanocrystals have captured the attention of scientist in the field for their catalytic activity in decomposition of hydrogen peroxide. In this study nanocatalysts MnFe2O4, Co3O4, Pb3O4, Co0.5Zn0.5Fe2O4 and Co0.5Mn0.5Fe2O4 were synthesized by co-precipitation method. The synthetic samples were characterized by XRD patterns, SEM images and IR spectroscopy. The size of the nanoparticl...
متن کامل